Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1396486, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694497

RESUMEN

Bone marrow failure (BMF) has become one of the most studied autoimmune disorders, particularly due to its prevalence both as an inherited disease, but also as a result of chemotherapies. BMF is associated with severe symptoms such as bleeding episodes and susceptibility to infections, and often has underlying characteristics, such as anemia, thrombocytopenia, and neutropenia. The current treatment landscape for BMF requires stem cell transplantation or chemotherapies to induce immune suppression. However, there is limited donor cell availability or dose related toxicity associated with these treatments. Optimizing these treatments has become a necessity. Polymer-based materials have become increasingly popular, as current research efforts are focused on synthesizing novel cell matrices for stem cell expansion to solve limited donor cell availability, as well as applying polymer delivery vehicles to intracellularly deliver cargo that can aid in immunosuppression. Here, we discuss the importance and impact of polymer materials to enhance therapeutics in the context of BMF.


Asunto(s)
Polímeros , Humanos , Polímeros/química , Animales , Enfermedades de la Médula Ósea/inducido químicamente , Enfermedades de la Médula Ósea/terapia , Trastornos de Fallo de la Médula Ósea/terapia , Materiales Biocompatibles
2.
Angew Chem Int Ed Engl ; : e202318220, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38588310

RESUMEN

Bottlebrush networks (BBNs) are an exciting new class of materials with interesting physical properties derived from their unique architecture. While great strides have been made in our fundamental understanding of bottlebrush polymers and networks, an interdisciplinary approach is necessary for the field to accelerate advancements. This perspective aims to act as a primer to BBN chemistry and physics for both new and current members of the community. In addition to providing an overview of contemporary BBN synthetic methods, we developed a workflow and desktop application (LengthScale), enabling bottlebrush physics to be more approachable. We conclude by addressing several topical issues and asking a series of pointed questions to stimulate conversation within the community.

3.
J Control Release ; 365: 950-956, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065415

RESUMEN

The application and design of protein transduction domains (PTDs) and protein transduction domain mimics (PTDMs) have revolutionized the field of biomacromolecule delivery. Our group has previously synthesized block copolymer PTDMs with well-defined hydrophobic and cationic blocks via ring-opening metathesis polymerization (ROMP). We have optimized the balance of hydrophobicity and cationic density to intracellularly deliver model proteins, active proteins, and antibodies. Despite the presence of serine, threonine, and tyrosine in naturally occurring PTDs, synthetic analogs have yet to be studied in PTDMs. In our present work, we introduce different alcohol groups to our PTDM structures as a new design parameter. A library of nine novel PTDMs were synthesized to incorporate alcohol groups of varying structures and evaluated based on their ability to intracellularly deliver fluorescently labeled antibodies. One PTDM in this novel library, named PTDM4, incorporates alcohol groups in both the hydrophobic and cationic blocks and was found to be the best performing PTDM with almost twice the median fluorescence intensity of the delivered antibody and half the cationic density compared to our positive control, a PTDM thoroughly studied by our group. PTDM4 was further studied by intracellularly delivering the active enzyme, TAT-Cre Recombinase. The activity of TAT-Cre Recombinase delivered by PTDM4 was comparable to that of the positive control, again with half the cationic density. This study is one of the first to examine the effects of alcohol groups on intracellular antibody and active enzyme delivery.


Asunto(s)
Polímeros , Proteínas , Proteínas/química , Dominios Proteicos , Polímeros/química , Etanol
4.
Mol Immunol ; 157: 129-141, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37018939

RESUMEN

Following activation, CD4 T cells undergo metabolic and transcriptional changes as they respond to external cues and differentiate into T helper (Th) cells. T cells exhibit plasticity between Th phenotypes in highly inflammatory environments, such as colitis, in which high levels of IL-6 promote plasticity between regulatory T (Treg) cells and Th17 cells. Protein Kinase C theta (PKCθ) is a T cell-specific serine/threonine kinase that promotes Th17 differentiation while negatively regulating Treg differentiation. Liver kinase B1 (LKB1), also a serine/threonine kinase and encoded by Stk11, is necessary for Treg survival and function. Stk11 can be alternatively spliced to produce a short variant (Stk11S) by transcribing a cryptic exon. However, the contribution of Stk11 splice variants to Th cell differentiation has not been previously explored. Here we show that in Th17 cells, the heterogeneous ribonucleoprotein, hnRNPLL, mediates Stk11 splicing into its short splice variant, and that Stk11S expression is diminished when Hnrnpll is depleted using siRNA knock-down approaches. We further show that PKCθ regulates hnRNPLL and, thus, Stk11S expression in Th17 cells. We provide additional evidence that exposing induced (i)Tregs to IL-6 culminates in Stk11 splicing downstream of PKCθAltogether our data reveal a yet undescribed outside-in signaling pathway initiated by IL-6, that acts through PKCθ and hnRNPLL to regulate Stk11 splice variants and facilitate Th17 cell differentiation. Furthermore, we show for the first time, that this pathway can also be initiated in developing iTregs exposed to IL-6, providing mechanistic insight into iTreg phenotypic stability and iTreg to Th17 cell plasticity.


Asunto(s)
Plasticidad de la Célula , Interleucina-6 , Proteína Quinasa C-theta/metabolismo , Interleucina-6/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T Reguladores/metabolismo , Diferenciación Celular , Isoformas de Proteínas/metabolismo , Células Th17/metabolismo
5.
Adv Drug Deliv Rev ; 192: 114586, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36280179

RESUMEN

The current therapeutic antibody market in the U.S. consists of 100 antibody-based products and their market value is expected to explode beyond $300 billion by 2025. These therapies are presently limited to extracellular targets due to the innate inability of antibodies to transverse membranes. To expand the number of accessible therapeutic targets, intracellular antibody delivery is necessary. Many delivery vehicles for antibodies have been used with some promising results, such as nanoparticles and cell penetrating polymers. Despite the success of these delivery platforms using model antibody cargo, there is a surprisingly small number of studies that focus on functional antibody delivery into the cytosol that also measures a cellular response. Antibodies can be designed for essentially unlimited targets, including proteins and DNA, that will ultimately control cell function once delivered inside cells. Advancement in cellular manipulation depends on the application of intracellularly delivering functional antibodies to achieve a desired result. This review focuses on the emerging field of functional antibody delivery which enables various cellular responses and cell manipulation.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Humanos , Anticuerpos , Citosol/metabolismo , ADN/metabolismo
6.
Front Immunol ; 14: 1292049, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259494

RESUMEN

Background: Induced regulatory T cells (iTregs) are a heterogeneous population of immunosuppressive T cells with therapeutic potential. Treg cells show a range of plasticity and can acquire T effector-like capacities, as is the case for T helper 1 (Th1)-like iTregs. Thus, it is important to distinguish between functional plasticity and lineage instability. Aplastic anemia (AA) is an autoimmune disorder characterized by immune-mediated destruction of hematopoietic stem and progenitor cells in the bone marrow (BM). Th1-like 1 iTregs can be potent suppressors of aberrant Th1-mediated immune responses such as those that drive AA disease progression. Here we investigated the function of the epigenetic enzyme, protein arginine methyltransferase 5 (PRMT5), its regulation of the iTreg-destabilizing deacetylase, sirtuin 1 (Sirt1) in suppressive Th1-like iTregs, and the potential for administering Th1-like iTregs as a cell-based therapy for AA. Methods: We generated Th1-like iTregs by culturing iTregs with IL-12, then assessed their suppressive capacity, expression of iTreg suppression markers, and enzymatic activity of PRMT5 using histone symmetric arginine di-methylation (H3R2me2s) as a read out. We used ChIP sequencing on Th1 cells, iTregs, and Th1-like iTregs to identify H3R2me2s-bound genes unique to Th1-like iTregs, then validated targets using CHiP-qPCR. We knocked down PRMT5 to validate its contribution to Th1-like iTreg lineage commitment. Finally we tested the therapeutic potential of Th1-like iTregs using a Th1-mediated mouse model of AA. Results: Exposing iTregs to the Th1 cytokine, interleukin-12 (IL-12), during early events of differentiation conveyed increased suppressive function. We observed increased PRMT5 enzymatic activity, as measured by H3R2me2s, in Th1-like iTregs, which was downregulated in iTregs. Using ChIP-sequencing we discovered that H3R2me2s is abundantly bound to the Sirt1 promoter region in Th1-like iTregs to negatively regulate its expression. Furthermore, administering Th1-like iTregs to AA mice provided a survival benefit. Conclusions: Knocking down PRMT5 in Th1-like iTregs concomitantly reduced their suppressive capacity, supporting the notion that PRMT5 is important for the superior suppressive capacity and stability of Th1-like iTregs. Conclusively, therapeutic administration of Th1-like iTregs in a mouse model of AA significantly extended their survival and they may have therapeutic potential.


Asunto(s)
Anemia Aplásica , Epigénesis Genética , Interleucina-12 , Proteína-Arginina N-Metiltransferasas , Animales , Ratones , Diferenciación Celular/genética , Citocinas , Modelos Animales de Enfermedad , Interleucina-12/farmacología , Sirtuina 1 , Proteína-Arginina N-Metiltransferasas/genética
7.
Macromolecules ; 56(21): 8565-8573, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38239340

RESUMEN

Bottlebrush networks designed to be constitutional isomers of each other were synthesized for the first time. These network constitutional isomers (NCIs) have significantly different mechanical properties depending on their kinetic chain lengths (RK), which are controlled by the monomer-to-initiator ratio. Specifically, the low frequency moduli, yield behavior, elongation at break, and adhesive strength of these NCIs are different at the same cross-link densities. The NCI concept is extended to include RKs' dispersity through the choice of the catalyst. These NCIs highlight the impact of living polymerization chemistry on network formation. The use of living polymerization chemistry to synthesize new networks, including NCIs, is expected to significantly advance the development of next-generation materials.

8.
J Polym Sci (2020) ; 60(9): 1501-1510, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35967758

RESUMEN

Herein it is reported how the overlap concentration (C*) can be used to overcome crosslinking due to diol impurities in commercial PEG, allowing for the synthesize of bottlebrush polymers with good control over molecular weight. Additionally, PEG-based bottlebrush networks are synthesized via ROMP, attaining high conversions with minimal sol fractions (<2%). The crystallinity and mechanical properties of these networks are then further altered by solvent swelling with phosphate buffer solution (PBS) and 1-ethyl-3-methylimidazolium ethyl sulfate/DCM cosolvents. The syntheses reported here highlight the potential of the bottlebrush network architecture for use in the rational design of new materials.

9.
Soft Matter ; 18(26): 4937-4943, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35730637

RESUMEN

Reconfigurable polymer networks are gaining interest for their potential applications as self-healing, recyclable, and stimuli-responsive smart materials. Relating the bond strength of dynamic interactions to material properties including stress relaxation time and modulus is crucial for smart material design. In this work, in situ crosslinked transition metal-terpyridine reconfigurable networks were utilized to modulate the characteristic network stress relaxation time, τR. The use of stress relaxation experiments rather than oscillatory frequency sweeps allowed for the measurement of network bond dynamics across a wider dynamic range than has been previously reported. The stress relaxation time was shown to be tunable by metal center, counterion, and crosslink density. Remarkably, the network crosslinked with covalent-like ruthenium chloride-terpyridine interaction, while having a longer τR, was qualitatively similar to the other metal-ligand networks. Furthermore, the relaxation time was independent of crosslink density in strongly bonded networks, allowing for independent tunability of modulus and τR. In contrast, increasing crosslink density reduced τR in networks crosslinked with weaker interactions.

10.
Soft Matter ; 18(22): 4220-4226, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35607851

RESUMEN

Rapid expansion of soft solids subjected to a negative hydrostatic stress can occur through cavitation or fracture. Understanding how these two mechanisms relate to a material's molecular structure is important to applications in materials characterization, adhesive design, and tissue damage. Here, a recently improved needle-induced cavitation (NIC) protocol is applied to a set of model end-linked PEG gels with quantitatively linked elastic and fracture properties. This quantitative link between molecular scale structure and macroscopic properties is exploited to experimentally probe the relationship between cavitation, fracture, and molecular scale damage. This work indicates that rational tuning of the elastofracture length relative to the crack geometry can be used to alter the expansion mechanism from cavitation to fracture during NIC.


Asunto(s)
Agujas , Geles
11.
ACS Biomater Sci Eng ; 8(6): 2489-2499, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35608244

RESUMEN

The delivery of functional proteins to the intracellular space offers tremendous advantages for the development of new therapeutics but is limited by the passage of these large polar biomacromolecules through the cell membrane. Noncovalent polymer-protein binding that is driven by strong carrier-cargo interactions, including electrostatics and hydrophobicity, has previously been explored in the context of delivery of functional proteins. Appropriately designed polymer-based carriers can take advantage of the heterogeneous surface of protein cargoes, where multiple types of physical binding interactions with polymers can occur. Traditional methods of assessing polymer-protein binding, including dynamic light scattering, circular dichroism spectroscopy, and fluorescence-based assays, are useful in the study of new polymer-based carriers but face a number of limitations. We implement for the first time the method of covalent labeling-mass spectrometry (CL-MS) to probe intermolecular surface interactions within noncovalent polymer-protein complexes. We demonstrate the utility of CL-MS for establishing binding of an amphiphilic block copolymer to negatively charged and hydrophobic surface patches of a model protein, superfolder green fluorescent protein (sfGFP), using diethylpyrocarbonate as a pseudo-specific labeling reagent. In addition, we utilize this method to explore differences at the intermolecular surface as the ratio of polymer to protein increases, particularly in the context of defining effective protein delivery regimes. By promoting an understanding of the intermolecular interactions in polymer-protein binding and identifying sites where polymers bind to protein surfaces, noncovalent polymer carriers can be more effectively designed for protein delivery applications.


Asunto(s)
Polímeros , Proteínas , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Polímeros/metabolismo , Unión Proteica , Proteínas/química , Proteínas/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35145027

RESUMEN

Advances in polymer chemistry over the last decade have enabled the synthesis of molecularly precise polymer networks that exhibit homogeneous structure. These precise polymer gels create the opportunity to establish true multiscale, molecular to macroscopic, relationships that define their elastic and failure properties. In this work, a theory of network fracture that accounts for loop defects is developed by drawing on recent advances in network elasticity. This loop-modified Lake-Thomas theory is tested against both molecular dynamics (MD) simulations and experimental fracture measurements on model gels, and good agreement between theory, which does not use an enhancement factor, and measurement is observed. Insight into the local and global contributions to energy dissipated during network failure and their relation to the bond dissociation energy is also provided. These findings enable a priori estimates of fracture energy in swollen gels where chain scission becomes an important failure mechanism.

13.
Macromolecules ; 55(12): 5131-5139, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37485288

RESUMEN

We report the synthesis of novel poly(ethylene glycol) and poly(dimethyl siloxane) (PEG and PDMS, respectively) bottlebrush amphiphilic polymer co-networks (B-APCNs) with high gel fractions by a grafting-through ring-opening metathesis polymerization. By varying the volume fraction of PEG (ϕPEG), we alter the crystallinity of the networks, achieving complete suppression of PEG crystallinity at ϕPEG=0.35. Furthermore, we show that the crystallinity of these networks can be tuned to alter their moduli. Through dynamic mechanical analysis, we show that the storage and loss moduli of networks with completely suppressed crystallinity (ϕPEG=0.35) behave similarly to a PDMS homopolymer bottlebrush network. These bottlebrush networks represent an unexplored architecture for the field of amphiphilic polymer co-networks.

14.
Macromolecules ; 55(23): 10312-10319, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37502106

RESUMEN

We compare the low-strain mechanical properties of bottlebrush elastomers (BBEs) synthesized using ring-opening metathesis and free radical polymerization. Through comparison of experimentally measured elastic moduli and those predicted by an ideal, affine model, we evaluate the efficiency of our networks in forming stress-supporting strands. This comparison allowed us to develop a structural efficiency ratio that facilitates the prediction of mechanical properties relative to polymerization chemistry (e.g., softer BBEs when polymerizing under dilute conditions). This work highlights the impact that polymerization chemistry has on the structural efficiency ratio and the resultant mechanical properties of BBEs with identical side chains, providing another "knob" by which to control polymer network properties.

15.
Biomacromolecules ; 23(1): 57-66, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34879198

RESUMEN

There is significant potential in exploiting antibody specificity to develop new therapeutic treatments. However, intracellular protein delivery is a paramount challenge because of the difficulty in transporting large, polar molecules across cell membranes. Cell-penetrating peptide mimics (CPPMs) are synthetic polymers that are versatile materials for intracellular delivery of biological molecules, including nucleic acids and proteins, with superior performance compared to their natural counterparts and commercially available peptide-based reagents. Studies have demonstrated that noncovalent complexation with these synthetic carriers is necessary for the delivery of proteins, but the fundamental interactions dominating CPPM-protein complexation are not well understood. Beyond these interactions, the mechanism of release for many noncovalent carriers is not well established. Herein, interactions expected to be critical in CPPM-protein binding and unbinding were explored, including hydrogen bonding, electrostatics, and hydrophobic interactions. Despite the guanidinium-rich functionality of these polymeric carriers, hydrogen bonding was shown not to be a dominant interaction in CPPM-protein binding. Fluorescence quenching assays were used to decouple the effect of electrostatic and hydrophobic interactions between amphiphilic CPPMs and proteins. Furthermore, by conducting competition assays with other proteins, unbinding of protein cargoes from CPPM-protein complexes was demonstrated and provided insight into mechanisms of protein release. This work offers understanding toward the role of carrier and cargo binding and unbinding in intracellular outcomes. In turn, an improved fundamental understanding of noncovalent polymer-protein complexation will enable more effective methods for intracellular protein delivery.


Asunto(s)
Péptidos de Penetración Celular , Péptidos de Penetración Celular/química , Guanidina/química , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/química , Unión Proteica
16.
Biomacromolecules ; 22(7): 2850-2863, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34156837

RESUMEN

Over the past decade, extensive optimization of polymeric cell-penetrating peptide (CPP) mimics (CPPMs) by our group has generated a substantial library of broadly effective carriers which circumvent the need for covalent conjugation often required by CPPs. In this study, design rules learned from CPPM development were applied to reverse-engineer the first library of simple amphiphilic block copolypeptides for non-covalent protein delivery, namely, poly(alanine-block-arginine), poly(phenylalanine-block-arginine), and poly(tryptophan-block-arginine). This new CPP library was screened for enhanced green fluorescent protein and Cre recombinase delivery alongside a library of CPPMs featuring equivalent side-chain configurations. Due to the added hydrophobicity imparted by the polymer backbone as compared to the polypeptide backbone, side-chain functionality was not a universal predictor of carrier performance. Rather, overall carrier hydrophobicity predicted the top performers for both internalization and activity of protein cargoes, regardless of backbone identity. Furthermore, comparison of protein uptake and function revealed carriers which facilitated high gene recombination despite remarkably low Cre internalization, leading us to formalize the concept of intracellular availability (IA) of the delivered cargo. IA, a measure of cargo activity per quantity of cargo internalized, provides valuable insight into the physical relationship between cellular internalization and bioavailability, which can be affected by bottlenecks such as endosomal escape and cargo release. Importantly, carriers with maximal IA existed within a narrow hydrophobicity window, more hydrophilic than those exhibiting maximal cargo uptake. Hydrophobicity may be used as a scaffold-independent predictor of protein uptake, function, and IA, enabling identification of new, effective carriers which would be overlooked by uptake-based screening methods.


Asunto(s)
Péptidos de Penetración Celular , Transporte Biológico , Péptidos de Penetración Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros , Transporte de Proteínas
17.
Soft Matter ; 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-33021618

RESUMEN

Characterizing the high-strain-rate and high-strain mechanics of soft materials is critical to understanding the complex behavior of polymers and various dynamic injury mechanisms, including traumatic brain injury. However, their dynamic mechanical deformation under extreme conditions is technically difficult to quantify and often includes irreversible damage. To address such challenges, we investigate an experimental method, which allows quantification of the extreme mechanical properties of soft materials using ultrafast stroboscopic imaging of highly reproducible laser-induced cavitation events. As a reference material, we characterize variably cross-linked polydimethylsiloxane specimens using this method. The consistency of the laser-induced cavitation is achieved through the introduction of laser absorbing seed microspheres. Based on a simplified viscoelastic model, representative high-strain-rate shear moduli and viscosities of the soft specimens are quantified across different degrees of crosslinking. The quantified rheological parameters align well with the time-temperature superposition prediction of dynamic mechanical analysis. The presented method offers significant advantages with regard to quantifying high-strain rate, irreversible mechanical properties of soft materials and tissues, compared to other methods that rely upon the cyclic dynamics of cavitation. These advances are anticipated to aid in the understanding of how damage and injury develop in soft materials and tissues.

18.
Mol Ther ; 28(9): 1987-2006, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32492367

RESUMEN

Regulatory T cells maintain immunological tolerance and dampen inflammatory responses. Administering regulatory T cells can prevent the immune-mediated tissue destruction of graft-versus-host disease, which frequently accompanies hematopoietic stem cell transfer. Neutralizing the T cell-specific kinase, protein kinase C theta, which promotes T cell effector functions and represses regulatory T cell differentiation, augments regulatory T cell immunosuppression and stability. We used a synthetic, cell-penetrating peptide mimic to deliver antibodies recognizing protein kinase C theta into primary human CD4 T cells. When differentiated ex vivo into induced regulatory T cells, treated cells expressed elevated levels of the regulatory T cell transcriptional regulator forkhead box P3, the surface-bound immune checkpoint receptor programmed death receptor-1, and pro-inflammatory interferon gamma, previously ascribed to a specific population of stable, highly suppressive human induced regulatory T cells. The in vitro suppressive capacity of these induced regulatory T cells was 10-fold greater than that of T cells differentiated without antibody delivery. When administered at the time of graft-versus-host disease induction, using a humanized mouse model, antibody-treated regulatory T cells were superior to non-treated T cells in attenuating lethal outcomes. This antibody delivery approach may overcome obstacles currently encountered using patient-derived regulatory T cells as a cell-based therapy for immune modulation.


Asunto(s)
Traslado Adoptivo/métodos , Anticuerpos/inmunología , Anticuerpos/farmacología , Péptidos de Penetración Celular , Enfermedad Injerto contra Huésped/terapia , Tolerancia Inmunológica/efectos de los fármacos , Líquido Intracelular/inmunología , Proteína Quinasa C-theta/inmunología , Linfocitos T Reguladores/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Factores de Transcripción Forkhead/metabolismo , Enfermedad Injerto contra Huésped/inmunología , Humanos , Tolerancia Inmunológica/inmunología , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Resultado del Tratamiento
19.
Mol Ther ; 28(10): 2220-2236, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32592691

RESUMEN

T cell receptor signaling, together with cytokine-induced signals, can differentially regulate RNA processing to influence T helper versus regulatory T cell fate. Protein kinase C family members have been shown to function in alternative splicing and RNA processing in various cell types. T cell-specific protein kinase C theta, a molecular regulator of T cell receptor downstream signaling, has been shown to phosphorylate splicing factors and affect post-transcriptional control of T cell gene expression. In this study, we explored how using a synthetic cell-penetrating peptide mimic for intracellular anti-protein kinase C theta delivery fine-tunes differentiation of induced regulatory T cells through its differential effects on RNA processing. We identified protein kinase C theta signaling as a critical modulator of two key RNA regulatory factors, heterogeneous nuclear ribonucleoprotein L (hnRNPL) and protein-l-isoaspartate O-methyltransferase-1 (PCMT1), and loss of protein kinase C theta function initiated a "switch" in post-transcriptional organization in induced regulatory T cells. More interestingly, we discovered that protein-l-isoaspartate O- methyltransferase-1 acts as an instability factor in induced regulatory T cells, by methylating the forkhead box P3 (FOXP3) promoter. Targeting protein-l-isoaspartate O-methyltransferase-1 using a cell-penetrating antibody revealed an efficient means of modulating RNA processing to confer a stable regulatory T cell phenotype.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo L/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/genética , Proteína Quinasa C-theta/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Péptidos de Penetración Celular/farmacología , Factores de Transcripción Forkhead/genética , Regiones Promotoras Genéticas , Unión Proteica , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/metabolismo , Estabilidad Proteica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...